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FOREWORD

This document presents results of a recently completed joint Boeing-NASA program to

study the effects of winglets on flutter characteristics of twin--engine transport type

wings and to verify flutter analysis methodology. This document is one of the two

proposed NASA publications dealing with this study and contains details sufficient to

permit independent vib:ation and flutter analysis. A second publication, a NASA

Technical Paper (TP), is planned for 1985, and will contain a technical summary. The

present document is in two volumes:

Volume I - Low-Speed Investigations

Volume It - Transonic & Density Effect Investigations.

The two volumes are arranged such that each volume may be used independently of the

other volume. The foreword and introduction are common to both volumes and are

included in each volume along with a complete table of contents covering both volumes.

Mr. C. L. Ruhlin of Con_f.iguration Aeroetasticity Branch of NASA Langley Research

Center was the test engineer for flutter tests conducted in the NASA Langley 16'

Transonic Dynamic Tunnel, and was the contract monitor for preparation of the two

NASA docu_ents. The Boeing Commercial Airplane Company personnel who were major

contributors to this study are:

K, G. Bhatia Flutter - Principal Investigator
J. F. Bueno Structures- Program Manager
A, W. Byrski Loads & Flutter - Supervisor
W. F. Carver Loads

M. G. Friend Model Design
J. J. Hill Weights
R. O, Kunkel Model Shop
D. W. Lee, Jr. Weights
D. 3. Marzano Flutter
J. E. Morrison Loads

R. M. Nadreau Structural Dynamics Laboratory
K. S. Nagaraja Flutter
C R. Pickrel Structural Dynamics Laboratory
S. Ros Loads

J. L. Stelma Flutter

J. H. Thompson Model Design
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1.0 Sununary

Flutter characteristics of a cantilevered high aspect ratio wing with winglet were

' investigated. The configuration represented a current technology, twin-engine airplane.

A low-speed and a high-speed model were used to evalua_.e compressibility effects

through transonic Mach numbers and a wide range of mass-density ratios. The results of

the investigation are describedin two volumes of thLsNASA CR and summarized in a

forthcomingNASA TP. The r_ultsfrom the testinNASA Langley16'TransonicDynamic

Tunnel (TDT) and analysis-test correlation are included in fills Volume II.

The low-speed model was retested k: TDT to determine altitude or mass-density ratio

effects. This model had been earlier tested in General Dynamics, Convair Division, San

Diego low-speed tunnel, and the results are discussed in Volume I. The mass-density ratio

was varied in TDT by testingthe low-speed model in both air and freo_..The

configurationswith winglet showed a ._witchin fluttermode, from nacellevertical

bendingto secondwing bending,due to decrc_c inmass-densityratio.The mass-density

ratioeffects,includingthe mode switch,were sath_factorilycorrelatedbetween analysis

"-" and test.

The hlgh-speedmodel was testedin freonfor a Mach range of about 0.6 to 0.91 and

dynamic pressuresup to 200 psf. Four fluttermechanisms were obtainedintest,as well

as analys_, from various combinations of configurationparameters. The wlnglet

_erodyrmmlceffectswere significantand caused reductionin flutterdynamic pressure.

The wingletrelatedflutterforthe configurationtested,was foundto be amenable to the

conventionalflutteranalysistechniques.The analystsshowed thatcouplingbetween wing

tipverticaland chordwisemotionshas significanteffectundersome conditions.

1985004961-023



2.0 Inr_fucCton

The interest in using wtng-.tlp-mocmted w_lets to reduce drag for translx_rt airplanes

was stimulated by the work reported in Reference (1), One of the first appllcation_ of

wL-_letJ wu for the KC-135 aL_plane based on a potentlal drag reduction of about six

percent estimated in Reference (2). The KC-135 Win61et Flight Research and

Demon_ration Program was formulated to design, fabricate and flight test a set of

winglets to prove the &ag reduction and other characteristics of the win_let concept.

This program included a low-_)eed wind-tunnel flutter model test and a flight flutter test

prod,ram (Ref. 3). The critical mode during flight flutter test was a 3.0 Hz low-darnped

mode occurring with a light fuel 1oadln8 at 21.500 feet altitude and with zero dew,roe cant

angle a_ -4 degrees incidence wlnslets. Flight testing for this configuration was

terminated at 370 KEAS. rather than the test goal of 395 KEAS, due to low damping

(g -_ 0,015). The low dampLng obtained for this mode was not predicted by flutter

anal_is. The lack of correlation was judged to be due to limitations of current lhnearized

aerodynamic theory and inability to represent transonic effects. Winglets have also been

consideredfor the B-747 airplaneas a part of the NASA Energy EfficientTransport

Program (Ref. 4). Two flutter modes were obtained in the low-speed model test for the

_" configuration with wtnglet_. These flutter mechanisms were not present for the baseline

configuration without winglet_ and were shown to result from winglet aerodynamics

rather than mass effects. Flutter speeds for the configuration with wtnglets were

si_Lftca.ntly lower than the baseline configuration. It was suggested that the flutter

mechanisms could be predicted by incorporating static-lift effects as with T-tail type

flutter analysis.

A transonic flutter model study of a supercrttical wing with wtnglet for an

executive-jet-transport airplane (Ref. 5) reported a good analysis-test correlation. The

winglet addition decreased flutter speed by seven percent, of which a five percent

decrease wu due to the wing-tip mass effect. Thus. there was no significant reduction in

flutter speed due to winglet aerodynamics. Results of another application of winglets for

the DC-10 airplane, under the NASA Energy Efficient Transport Program, were recently

published (Refs 6 and 7). A low-speed flutter model test showed that the winglets had

generally detrimental effects on the flutter characteristics with small-to-moderate

.o

1985004961-024



degradation in the basic win8 flutter mode and a large degradation in a higher frequency

wln6 flutter rno_. Durin6 the flight test of the DC-10 airplane with winglets, 500 pounds

of ma_ bal_nce wal installed in each wing tip to ensure adequate flutter margins for

fltsht testing.

Itappearsfrom the availabledata thatwingletsgenerallycauseddegradationinflutter

speed. The actualreductioninflutterspeed variedwith the confi_uratlon.The KC-135

flight test experience of encountering an unexoected low-cLamped mode hishlighted the

technical risk involved tn flutter u_e_ment of an airplane configuration with wtnglets.

The only transonic wind-tunnel flutter test data available on a scaled airplane wing was

for an executiveJet-trm_port _nS which showed a small reduction in flutter speed due to

aztdition of a wtn_et. These comrkierations led to a joint Boeing/NASA program to

develop a flutter methodolo_ for wtnslet configured wings. A typical, current

technolol_', twin-engine transport wh_ was selected as the basis for the study. A test

program was outlined as follov_:

A. Pressure Model Test for Aerodynamic Data Base

_ B. Low-Speed Test

(1) Model Ground Vibratlccl Test (GVT)

(ll) Flutter Test and Parametric Studies

(Ui) Anal!_i_-Test Correlation

C. Test in NASA Langley 16' Transonic Dynamics Tunnel (TDT)

(1) Retest of Low-Speed Flutter Model for Mass-Density Ratio Effects

(!1) Selection of High-Speed Model Configurations

(Ui) High-Speed Model GVT

(iv) High-Speed Model Flutter Test

(v) Analysis-Test Correlation

Cantileveredwing models were used in allthree tests.It was judged that once the

w_nS-win61et interaction was adequately represented, the effect of body and empenna6e

on flutter could be accounted for. The pressure model test was designed to collect

3
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aerodynamic data for both loads and flutter analysis. Fi_'e I shows the model

Lnstallatlon in the Bo_in8 Transonic WLnd Tunnel (BTWT). P:es._ur_ data was collected for

a Math nu..tber-an8to of attack grid for the followtn8 configurations:

A. (1) Cle_n v_g with nominal tip

([i) Cle,m_ w,£ng with winglet at 20" c-,_, a_!_I_ (outboard relative to the

vertical)

B. (1) Win_, with nacelle and nominal tip

(ll) Wlng with nacelle and (a) Wtn_let at 20" cant

(b) Winglet at I0" cant

(c) Wtnglet at 0" cant

C. Confic$uratior_ described under B above but with the wing sweep angle

increased by 5"

D. Configuratton_ described under B but with the wing sweep angle decreaseu by 5"

'_ The pressure data was reduced to sectional data. The wing sectional data was linearized ,

with respect to angle of attack to obtain C , and corrected to remove the effect of the
rl(_

model wing flexibility. The wing sectional data was also linearized with respect tc the

wing sweep angle to obtain C , but was not corrected for the model flexibility effects.
n_

The wlnglet sectlonal data was slmilarly llnearized without being corrected for the model

flexibility. The Hnearlzed sectlonal data was used in the flutter analysLs.

The choice of flutter test configurations and parameters was dictated by the task

deflr.[tion, vlz., to develop flutter methodology. Therefore, the test was planned to obtain

different kinds of flutte_ modes so that the wlnglet rna_ and aerodynamic effects could

be separately Idcntkfled for each of the flutter modes. The low-speed flutter te_t was

designed with e larger number a_d a wider range of parameters taking advantage of the

relatlve ease cf atmo_'phcric low-speed flutter testing compared to hlgh-speed testing.

The high-.speed flutter test was designed after establi_hing analysis-test correlation for

the low-speed flutter test. Based on the knowledge derived from the low--speed flutter

4
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test, a reduced number of configurations m_d parameters were selected for testing in the

high-speed tunnel. The low-speed fit;tier test was conducted at the General Dynamics,

Convair Division, San Diego wind tunnel facility. The transonic test was conducted in the

NASA Langley 16' Transonic Dynamics Tunnel (TDT). A schematic diagram of the wing

sad the wing tips _.ested, is shown in figure 2.

The low-speed model wing was of conventional, single-spar construction with wing

sections perpevdicular to the spar. The configurations for the low-speed flutter model

testwere:

A. (i) Clear_ wing (without nacelle)

(ti) Wlr_ with win&let (without nacelle)

(Ill) Winf with wln&let mass

simulator (without nacelle)

B. (l) Wing with naceJle

(il) Win8 with nacelle and w_m&let

(iii) Wing with naceUe and winglet mass simulator

C. ([) Wins with nacelle boom

([i) Wing with nacelle boom and win&let

(ill) Wing with nacelle boom and win&let mass simulator

The win&let mass simulator was designed to represent winglet weisht, center of 8rarity

and inertia properties to help separate winglet inertia and aerodynamic effc_s. The

results from configurations with nacelle boom were not used due to seed correlation

obtained for the configurations with nacelle.

The parameters varledwere:

a. angle of attack.

b. modelyawangle.

c. win 8 fuel (0%, 50%, 75%, and 100%),
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d. nacelle strut side berating frequency,

e. naceUe strut vertical bending frequency,

f. win_et/simulator cant angle (0 °. 10°, 20° relative to the vertical), and

g. wtngiet/simuZator stiffness.

The variation of az_le of at_ck and yaw angle was included to evaluate the static-lift

effects. The affect of nacelle side bending frequency was found to be small for the test

configuration, and is not discussed further in this document.

The main objective of flutter testing in the NASA Langley TDT was to determine the

effects of Mach number on flutter characteristics. However, the flutter points obtained

in a variable d_nslty, transonic tunnel depend upon the mass-density ratio as well as the

Mach effects. Therefore the low-speed model was retested in TDT to determine altitude

or mar_-d_ity ratio effects at lowspeeds. Only two configurations, empty wing with

nominal nacelle and with and without winglet, were tested. The analysis had shown a

switch in flutter mode, from rmcelle vertical bending to second wing bending, due to

decrease in the mass-density ratio. To obtain the mode change in the tunnel,

mama-density ratio was vm'ied by testing the configuration with winglet in both air and

freon. The strategy was to show that the mass-density ratio effects, for a winglet

configured wing, could be predicted at low Mach numbers. _e flutter correlation at

higher Mach numbers could then be evaluated on the basis of compressibility and transonic

effects. The high-speed model was tested in freon for a Mach range of about 0.6 to 0.91

and dynamic pressures up to 200 psf.

The high-speed model was constructed primarily of flberglass sandwich components with

ribs, spars, stringers and skin representing a me,tern transport wing. Wing fuel was

simulated by water. The model was instrumented with 20 accelerometers, 23 pressure

transducers in two chordwlse arrays, and strain gages to monitor wing and winglet loads.

The followir_ configurations were selected for testing:

A. Wing with nacelle and nominal tip

B. Wing with nacelle and ballasted tip

C. Wing with nacelle and winglet
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The ballasted tip configuration was selected to deten_ine the effect of winglet weight

separatelyfrom wlngletaerodyr_mics.A wingletmass simulatorsimilarto thatusedon

the low-sl)ec_I model, would have _trodueed unknown aerodynamic effects at high

speeds. Therefore, tl_e ballast weight w_ incorporated inside the wing contour resulting

ina wing tipaerodynamicallyidenticalto the nominal tip.The testparametersselected

were:

a. wing fuel (empty and full),

b. naceUe strut vertical bending frequency,

c. wtnglet cant angle (0° and 20° relative to the vertical), and

d. angle of attack.

Two nacelle strut vertical bendingsprings were _sed. The nominal strut vertical bending

spring (nominal nacelle) and the softer strut vertical bending spring (soft nacelle) gave

rise to different flutter characteristics due to differences in coupling of nacelle motion

with inboard wing torsion. A series of high angle of attack runs, within the model load

limits, was run to verify that there were no single-degree-of-freedom instabilities at

transonic speeds.

J

Thi._ volurae pertains to the flutter test conducted in the NASA Langley tunnel. The

Ifi_hlights are covered in the main body. Appendices A, B and C contain sufficient data,

in the form of figure.¢_and tables, to allow an independent analysis. Appendix D contains

procedure used to modify calculated stiffness matrix. A summary of experimental results

istabulatedinAppendix E.

i

i,

3.0 Msr_-De_-ityRatio Effects at Low Mach Numbers

The low-speed model tested earlier in the Convair tunnel, was retested in the TDT. Only

two comfi&n_ratlons, empty wing with nominal nacelle and with and without winglet, were

tested. The com+'itNratlo_ tested were identical to the similar configurations tested

earlier at Cor,vair e.:cept for the following:

v
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(a) The model was wall mounted and supported from the balance in the TDT.

The body fairing of the high-speed model was used. In the Convair ttalnel, the

model was mounted on a stiffened body supported by an A-frame bolted to the

tunnel floor at the centerline of the tunnel. The model test frequencies did not

change stgnifLcantly between the two installations. Table 1 lists the two sets of

frequencies and the analyatical frequencies for the configuration with winglet.

Figure 3 shows a photograph of the low-speed model installed in TDT.

Co) The model tested in the convair tunnel had shims installed in the wing sections

to simalate the wing twist distribution for most of the runs. The model was

installed in the TDT, without any shims, The effects of wing twist for the

winglet configuration with 75% fuel case was evaluated in the Convair test and

is summarized below:

FLUTTER
WING SPEED DYN PR FREQ

TUNNEL TIP SHIMS (KTAS) (PSF) (Hz)

CONVAIR WINGLET YES 90.9 27.4 8.7

CONVAIR WlNGLET NO 88.8 25.8 8.6

CONVAIR NOMINAL YES 97.9 31.7 8.7

CONVAIR NOMINAL NO 96.6 30.8 8.6

Since the repeatability of flutter speed was determined tc be within 1 KTAS, there

appears to be • smaU drop in the flutter speed due to removal of the shims from the wing

sections for the configuration with winglet. The repeatability of flutter speeds between

the Convair a_A TDT (air) for the two empty fuel configurations i_ summarized below:

8
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DENSITY

WING (SLUGS/ SPEED FLUTTER FREQ

TUNNEL TIP SHIMS FT3)x 103 (KTAS) DYN PRE§S(Hz)
(Ib/ft ")

CONVAIR WINGLET YES 2.329 89.2 26.4 8.8

TDT WINGLET NO 2.309 86.0 24.3 9.0

CONVAIR NOMINAL YES 2.322 96.5 30.8 8.7

TDT NOMINAL NO 2.349 91.2 27.8 9.0

The differenceintheflutterspeedfortheconfigurationwithoutwinglctisabout 5%, and

is higher than the configuration with wtnglet. The higher difference in flutter speeds for

configuration with nominal tip was not looked into in detail as more emphasis was placed

on the configuration with Winglet. The mass-density ratio effects were obtained and

analyzed in more detall for the configuration with winglet as described below.

The analysis .had shown a s'wltch in flutter mode, from nacelle vertical bending to second

_ wing bending, due to decrease in the mass-density ratio. The range of mass-density ratio,

to affect the mode change in the tunnel, was achieved by testing the configuration with

winglet in both air and freon. Figure 4a shows the analysis- test correlation as a function

of mass-density ratio for all test points. In Figure 4b, the data points are shown for

mass-density ratios up to 50 to show more clearly the switching of flutter modes. The

analysis is able to predict the trend correctly and shows good correlation with the test

results. The switch in the flutter mode occurred at higher mass-density ratio in the test

than sltown by analysis. A small difference in actual and predicted damping could explain

this difference. The analytical results were calculated using the post-test model

described in Section 6 of Volume I except that the analysis frequencies were adjusted to

match the model GVT. This adjustmen_ is equivalent to about 1.5 KTAS increase in

analytical flutter speed. It was concluded that the mass-density ratio effects can be

predicted With acceptable accuracy for Winglet configured wings at low Mach numbers.

t
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4.0 Description of Hish-Speed Test

The model was instaUed in the NASA Langley TDT as shown in Figure 5. The model was

supported on the NASA balance mounted on the wail turntable. A ballasted wing tip was

fabricated such that it could retlace the nominal wing tip. The weight and Body Station

coordinate of center-of-gravity location of the ballasted tip were similsur to the wlnglet:

WEIGHT CG LOCATION (INCHES IN WRP
(LBS) RELATIVE TO LEADING EDGE OF WING TIP)

AFT OUTBOARD

BALLASTED TIP 0.350 5.00 0.40

WINGI.ET 0.378 5.36 I.17

NOMINAL TIP 0.0198 3.96 0.30

The nominal and ba/la_ted tips were aerodynamically identical to each other. Each one of

the three tips could be attached to two hard points in the win8 tip structure.
!

The nominal naceUe configuration was a strut - spring combination corresponding to

cantilevered nacelle vertical bending frequency of 24.7 Hz. The soft nacelle configuration

was a strut - sprin8 combination corresponding to a cantilevered nacelle vertical bendin8

frequency of 15.99 Hz. The nominal winglet configuration was a 20 ° cant winglet with a :,

cantilevered winslet frequency of 93,0 Hz.

The test procedure adopted reflects the emphasis on t'lut_er correlation rather than

flutter clearance. A comprehensive model GVT was conducted in the Boeing Structures

Dynamics Laboratory (SDL) prior to the wind tunnel test, The model frequencies were

also determined for the tunnel installation. The model responses were monitored durin8

the test. Some of the highlights of the test procedure are described below.

I0
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- The cantilevered model configurations tested in the SDL for mode shapes were:

BODY WING

bGPPORT SHELL FUEL NACELI.E WINGLET

a) STEEL PLATE OFF EMPTY OFF OFF

b) NASA BALANCE OFF EMPTY OFF OFF

c) NASA BALANCE ON EMPTY OFF OFF

d) NASA BALANCE ON EMPTY NOMINAL OFF

e) NASA BALANCE ON EMPTY NOMINAL NOMINAL

f) NASA BALANCE ON FULL NOMINAL OFF

g) NASA BALANCE ON FULL NOMINAL NOMINAL

h) NASA BALANCE ON EMPTY OFF NOMINAL

The steel plate as well as the NASA Balance were supported from a strongback. A

-_ hammer test for wing-nacelle-_mglet configuration was conducted in the SDL and it was

decided that the hammer test, instead of shaker, -_,II oe used in the tunnel to obtain

model frequencies in still air. An instrumented hammer was used for exciting the model

to obtain its frequency response. The frequency spectrum of each configuration in the

tunnel was examined to verify that the model was not damaged and the tunnel installation

was proper. This procedure allowed detection of anomalies in the model and helped in

i_olation and correction of the cause of any differences.

Figure 6 shows the tunnel characteristics for freon operation. The total pressure (H)

curves roughly correspond to constant stagnation density lines in the tunnel. The most

efficient tunnel operation is achieved in a tunnel "run" by operating the tunnf-I alor_

constant H curves which results in a simultaneous increase in the Mach number and

dynamic pressure. A run was terminated if one of the following four conditions was

reached: (i) Mach 0.91, or (U) dynamic pressure of 200 psf, or (iii) excessive model

response amplitudes either due to buffet or low damping, or (iv) onset of flutter. The

_ maximum Mach number, dynamic pressure and other tunnel parameters as well as the

frequencies of significant responses and reason for terminating the run were recorded.

This procedure was followed throughout the test. The results of pre-test analysis were

i 11
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_. used to select the tunnel runs. For a typical predicted flutter boundary example, also

shown in Figure 6, runs might be made along H = 300, 400 and 600 psf. If the test flutter

points obtained were judged to correlate with the prediction, no further runs were

resarded as necessary for that particular configuration; otherwise additional runs were

made. A decision was made to not spend the tunnel time in precisely defining the

transonicbucket. Instead,the limited tunnel time was utiUzed to test as many

configurationsas possible.Thisstrategyproved to be successfulbased on the number of

configurations tested and flutter points obtained in the tunnel.

During each run the model responses were monitored by strip chart traces, and reduced to

power spectra. "damping indicator", and cascade plots. The acceleration power spectrum

of either the wing tip vertical and fore-aft accelerometers (or both) were displayed in

real time with updates every second. The inverse of the amplitude of the highest peak of

the power spectrdm, for wing tip vertical accelerometer, was plotted, also in real time,

versus Mach number. This was called a "damping indicator" or "relative damping" plot.

The cascade power spectra were plotted for almost every run and were available within a

few minutes after the run.

Two DRAS (Dynamic Kesponse Actuated Switch) units were employed to safeguard

against excessive model acceleration amplitudes. One of the DRAS units was set to

actuate opening of the four tunnel by-pass valves for quick shutdown at a preset,

sustained amplitude. The second unit was set up to switch a red warning light at a fixed

percent of the shut-off amplitude. The hook up of the DR.AS units was initially permitted

by NASA on a trial basis. There was a concern about DKAS unit repeatedly shuttlng-off

the tunnel prematurely. The system worked well in practice and the DRAS unit remained

in the shut-off loop throughout the test.

5.0 Analytical Representation

The analytical representation used was identical to the low-speed model (Volume I). The

built-up, high-speed model wing was structurally represented by finite beam elements

(elastic axis) as if the wing were of single-spar cc struction, The nacelle and strut were

12
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attached as rigid, luml>-m_ses to the _ elastic axis. The wtn_et and ballasted tip

were represented as separate substructures using branch mode representation. The

cantilevered nacelle strut and win_et test frequencies and mode shapes were input as

assumed modes. The mass distributions of the model wing and wh_let were calculated,

and the total mass and inerttas were individually verified with the measured values. The

= nominal and ballasted tip mass and inertia properties were measured. The calibrated

model stiffness properties were used to improve correlation with the ,.esults of the model

GVT. This data is included in Appendix A to allow independent analysis.

The aerodynamic representation for flutter analysis was based on the strip-theory

aerodynamics (AF1 program-Ref 8). The scctional aerodynamics data was derived, from

two wind tunnel tests, for Much numbers of 0.4, 0,65, 0.80, 0.88. and 0.91. There were

minor differences between the pressure model and the high-speed flutter model.
x

Therefore, an earlier wind tunnel test for wing-nacelle conf'_guration was used as a basis

, for sectional aerodynamics data. To obtain the sectional data for configurations with

": wingiet, the difference due to winglet from the later test was algebraically added to the
_t

sectional data from the earlier test. The sectional data for the five selected Much

i numbers is included in Appendix B. In order to get a theoretical sectional aerodynamic

' \- data, DUBLAT (doublet lattice program - from Ref 8) was used for steady flow. The

', theoretical sectional data obtained are also included in Appendix B. The nacelle Cn and. ¢X

C
y fl values used were 0.052 and 0.042 respectively at M = .4 and changed very little at

, high Mach number.

The flutter solutions were obtained at Much numbers of 0.4, 0.65, 0.80, 0.88, and 0.91 and

five densities for each configuration. The flutter dynamic pressures were plotted on

tunnel charts. The match-point solutions were determined, for each flutter mode,

corresponding to structural damping (g) of 0.0 and 0.03.

6.0 Correlation With Model GVT Results

,_ The model GVT results were used to modify the analytical model to improve correlation
J

with the test mode shapes and frequencies. The GVT results for the clean wing (without4

13
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rmceUe and with nominal tip) configuration were used to modify the analytical

representstlon. Asaumin8 the analytical mode shapes to exactly match the test mode

shapes for the clean wing, the analytical stiffness matrix was modified based on matching

the frequencies. Table 2 lists the frequencies for the clean wing. The node line plots for

mode shapes from the modified analysis and the test are included in Appendix C for clean

wing, wins-naceUe, and wins-nacelle-winslet configurations. The procedure for

modifytn8 the stiffness matrix is described in Appendix D.

The modified stiffness matrix was used for all configurations. This was possible because

of the modeUn8 approach described in Section 5. Tables 3 and 4 list the frequencies for

wing-nacelle, wins-nacelle-ballasted tip and wins-nacelle-winglet configurations for

empty and full wing fuel. The differences in GVT frequencies between model installation

in the Structures Dynamics Laboratory (SDL) and the tunnel are attributed to the tunnel

turntable. The frequencies for empty wing configurations with soft nacelle are shown in

Table 5.

The modal correlation between the analysis and GVT was consldered to be reasonably good

• peclally when considering the difficulties involved in stiffness calibration. The oaly

- significant difference in the modal correlation was found to be for the wing (full)- nacelle

(nominal)- wlnglet (20 deg) configuration for the "chordwise" mode. For this mode, the

wing fore-aft motion is dominant with significant coupling with outboard wing bending _
and torsion. The analytlcal frequency is about 2 Hz nigher than the frequency of 20.7 Hz

obtained durln8 tunnel GVT. In the post-test analysis, this difference was found to be

significant for some flutter modes. "i'tfis is further discussed in Section 9.

J

i

7.0 Flutter Test Rem_lts and Correlation

The test results obtained are shown in figures 7a to 7e. There was a significant reduction

in flutter dynamic pressure (QF) due to the winglet aerodynamic effects. For the
configuration with nominal nacelle strut and empty fuel (fig. To), the effect of the

baUastcd tip was to slightly lower the flutter boundary except at higher Mach numbers.

14
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However, for the confi_ratlon with the nominal nacelle strut and full fuel (fig. 7c), the

effect of the ballasted tip was to cause a low-damped mode to occur at a sllghtly lower

dynamic pressure. The reduction in QF due to winglet aerodynamic effects was more
pronounced for this cue. The configuration with the soft nacelle strut and empty fuel

(fig. 7d) showed trends similar to the configuration with nominal naceUe strut. The effect

of win_et cant an81e shown in figure 7e, was found to be similar to that for the low-speed

model. The differences in the effects of winglet aerodynamics on different configurations

were primarily due to the flutter modes. The four flutter modes encount_.red were similar

to the four flutter mechanisms found for the low-speed model. The flutter test results

are summarized in a tabular form in Appendix E. An angle--o f -attack variation series was

run, within model load limits, over a Q-M range representative of scaled flight envelope

for the wing (era.pry)- nacelle (nominal)-wtnglet (20 deg) configuration. The model load

limits were -80 lbs to 180 lbs. No single degree-of-freedom instability was found to exist.

The analysis-test correlatlon obtained is shown in figures 8- 1I. A short discussion related

to each configuration is presented below.

(a) Wing (Empty)-Nacelle (Nominal) configuration re_flts are shown in Figure8a.

The nacelle vertical bending mode was found to flutter. The analysis also

predicts the flutter to occur in the nacelle vertical bending mode. The

analytical QF-M flutter boundary appears to have similar shape as the test, but
the analysis is conservative.

(b) Wing (Empty)-NaceUe (Nominat)-Ballasted Tip configuration results are shown

in Figure 8b. The flutter still occurs in the nacelle vertical bending mode.

However, the analysis is sllghtly unconcervative rather than conservative as for

the nominal tip configuration.

(c) Wing (Empty)-Nacelle (Nominal)-Winglet (Nominal) configuration results are
p

shown in Figure8c. At the two higherMach numbers,M = 0.77and .828,the

flutter occurred In nacelle vertical bending mode. At Iviach .66, the model

response showed high amplitude in 17.6 Hz nacelle vertical bending mode and

22.3 Hz second wing bending mode.

15
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The ratioof accelerationamplitudesquared,of the 22.3 Hz to the 17.6Hz

mode is 1.37. This ratiois based on a spectrum derivedfrom exponential

averaging, with overlap processing, of ten ensembles of five seconds each. The

corresponding ratio of displacement amplitudes is 0.72. Therefore, it is possible

to classify the flutter mode as a second wing bending mode based on

acceleration response, or as a naceUe vertical bending mode based on

displacement response. However, since acceleration response is generally used

in flutter testing, the flutter mode was designated as second wing bending

mode. The snalysis-test correlation for nacelle vertical bending mode is

satisfactory. The correlation at M = 0.66 is also satisfactory, since the test

point IS interpreted as being a combination of nacelle vertical bending second

wing bendLng response.

(d) Wing (Full)-Nacelle (Nominal) configuration results arc shown in Figure 9a. The

wing chordwise bending mode disappears at higher damping (g). Two runs were

made and one flutter point for wing tip mode was obtained. The analysis-test

correlation is satisfactory.

(e) Wing (Fu11)-Nacelle (Nominal)-Ballasted Tip configuration results are shown in

Fi&,_re 9b. Two runs were made. No flutter points were obtained although the

pass at hlgher dynamic pressure resulted in some low damped response in second

wing bending mode.

(f) Wing (FuU)-Nacelle (Nominal)-Winglet (Nominal) configuration results are

shown in Figure 9c. This Ls the most complicated configuration in terms of

sorting out the flutter modes. Three flutter modes (nacelle vertical bending,

whig chordwise bending and v_mg tip) were observed. At Mach .856, there was

distinct beating between the 18.5 Hz (nacelle vertical bending) and the 19.1 Hz

(wing chordwise bending) modes. At Macn .79, response in both these modes is

apparent. The higher frequency wing tip mode was observed for the test points

at )_.ach ,73 and .644. The analytical results match fairly well for the nacelle

vertical bending and wing chordwise mode at the two higher Mach numbers.

16
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However, the analysis appears too conservative for the wing chordwise mode

and unconservative for the _ tip mode. Considerable analytical effort was

devoted in understanding the sensitivities of the wing chordwise and tip modes.

The results are discussed in Section 9.

(g) Wh_ (Empty_-Nacelle (Soft) configuration results are shown m Figure 10a. At

the higher Mach numbers, low-damped response at several frequencies was

observed. The flutter obtained was in second win 8 bending mode. The

analysis-test correlation is satisfactory. The area included in the g = 0

boundm-y for the naceUe vertlcal bending mode is the resion of instability for

that mode.

(h) WL_ (Empty)-Ne.celle (Soft)-Ballasted Tip configuration results are shown in

FigurelOb. The fluttercharacteristicsand the natureof correlationissimilar

to case(g)above.

(I) Wing (Empty)-NaceUe (Soft)-Winglet (NomLnal) configuration results are shown

in Fi_re 10c. The flutter speeds are lower compared to c_.ses (g) and (h)

-_ above. The analysis-test correlation is satisfactory. An interesting feature is

that both analysi_ and test, show presence of tke nacelle ':ertical bending and

second _ bendlng modes in close proximity to each other.

(j_ Wing (Empty)-NaceUe (Nominal)-Winglet (0° cant) configuration results are

shown in Figure 11. The flutter characteristics did not show a significant

difference due to change of winglet cant ansle from 20* to 0°.

The effect of the win_et was to reduce the flutter dynamic pressure. In order to get a

quantitative effect, the aaalytical flutter results for wing (empty)-rmcelle (nominal) with
-3

the three wing tips are shown in Figures 12a to 12c for a density of 1.11 X 10 sluss/cu

ft. For the naceUe vertical bending mode at M = .88, the effect of the tip weisht is to

increase the flutter dynamic pressure (8 _ .03) by 7% relative to the nominal tip

configuration. The aerodynamic effect of vvinglet is to reduce the flutter dynamic

pressure ( 8 = .03) by 14% relative to the ballasted tip configuration. Thus the net
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reduction in th_ armlytical flutter dyrmmlc pressure due to the combined effect of Winglet

weight and aerody,.uu_nics is relatively small for the empty fuel confito_ration. For

different _ com'Itlurations, different fuel conditions or different modes, the effect of

the win_et weigh_ and &erodyuamlcs wlU obviously be d_ffere_t.

8.0 Reduction of Test D&ta

The _ta obtained during the test was critlcally evaluated after the test. The reason for

stopping each run w_¢ reviewed by examining the strip charts and cascade plots. Also

po_.t-t_t d_ta reduction was done for selected runs. The post-test d_ta reduction

consistc_ of:

2
(a) Plotting of calibrated I_A (from power spectrums) versus Mach number for

maadmum amplitude in each of the thre_ -'Atected frequency bands.

Co) C&librated time histories for eisht seconds near end of ttL. _m with the

maximum response near the middle of the eight seconds.

(c) Flutter modes were derived from Fourier analysis of one second of maximum

response described in (b). The wing tip response was used as & reference in

defining the phase relations.

Figures 13, 14, ann 15 present exam,_tes of the information provided by (a), (b), and (c),

respectively. The followin8 observations were made from review of the test data.

(a) The flutter dynamic pressure and Mach number recorded in the tunnel did not

warrant much of an adjustment. The "damping indicator" verm_s Mach number

plots could be used to extr&polate to a Mach number corresponding to a

selected level of IIA 2. It is not feasible to extrapol&te to a IIA 2 = 0

corresl_ondin 8 to flutter because of (i) some scatter in the "d_mping indicator"

versus M&ch plots, (l[) the accuracy of .01 associated with determination of the

tunnel Mach number and (iii) the accuracy associated with reading the recorded

18
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analog voltage si_l corresponding to the Mach number. It was confirmed that the

tunnel was stopped at about the same level of acceleration response for most of the

flutter runs. Therefore, no modification was made to flutter Mach numbers and

dynamic pressures recorded during the test.

(b) Comp rons of time traces approaching flutter for runs where the response

frequencies were significantly different, do not indicate significant differences

in phase relations.'dp cr one accelerometer to the other. From the low-speed

model responses, it was possible to identify different phase characteristics for

different flutter modes. This is much more difficult to d._ from the )fig)h-speed

model responses. Possible reasons could be that (i) the higher turbulence

associated with higher dynamic pressures excites many of the lower frequency

modes, and (fi) the sustained oscillations are not maintained for a _uff_.2ient

time to clean up the response. Therefore, the" response frequency remains the

primal/means of identifying the flutter mode.

9.0 An_ytical S_,_sitivity Studies

An analytical sensitivlty study was conducted to evaluate the effect of selected

parameters on analysis-test correlation. The primax_/ configuration for the sensitivity

study was the _ (full)-nacelle (nom._nal)- winglet (nominal) configuration. This was

judged to be the most interesting configuration tested since three flutter me_har,_sms

were observed. In addition, this configuration was found to be sensitive to the

characteristics of the wing chordwise bending mode as described later in this section.

The following parametric variations resulted in small ':hanges to the flutter results, a_i

were judged to be not si_ifica_nt:

(a) Wing elastic axis locatiun was varied as shown in Figure 16.
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Co) Number of aerodynamic strips in the AFi program were var_.od.

(c) The statlc-lift effect was included in the flutter analysis 1_in8 SLOAEF

program.

(d) The modification of stiffness matrix (Appendix D).

The flutter spe_ds were found to be sensitive to the following parameters:

(a) Structural - Wing chordwise bending, and

Co) aerodynamic - spanwise d_tribution of static lift-curve slope

and aerodyr_mic center.

The sensitivity to _ chordwlse bending was considered to be somewhat unusual, and is

believed to be brought about by the combination of w_nglet and fuel. The importance of

the wing chordwlse bending mode can be seen from plots of flutter dynamic pressure

versus win8 chordwise bending frequency for Math (density) combhmttons of 0.65 (3.50 X

" 10-3 slugs/cu ft.) and 0.88 (I.II X t0 -3 slugs/cu ft.) in Figures 17a and 17b. The wing

chordwise bending mode has a significant wing tip vertical motion component which

_'- accounts for Its effect on flutter speeds.

The chordwise bending stiffness was modified (see Figure A2) to evaluate the effect of

change in stiffness distribution. The modified stiffness probably was a better

representation of the model. The chordwise bending stiffness has significant effect on the

frequencies of win8 chordwlse and torsion modes. The resulting wing chordwise bending

and torsion frequencies for the v_n8 (full)- nacelle (nominal)-win81et (nominal) were 20.3

Hz and 40.3 Hz, respectively. The corresponding frequencies .'or the reference analysis

were 22.87 Hz and 41.89 Hz (Figure C5). The corresponding test freque._cies were 20.7 Hz

and 42.8 Hz (TDT installation), respectively. Thus the modification to the wine chordwlse

bending stiffness improved the GVT frequency correlation for the chordwise mode with

some deterioration for the torsion mode. The sensitivity of flutter dynamic pressure to

chordwlse b_fln8 stiffness, alor_ with other parameters, is discussed below.

2O
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The flutter dynamic pressure (Q_) at selected Mach number - density combinations is

compared in Taole 6. Four Mach number - density combinations were selected mainly

based on theh" proximity to the test points obtained. These were Mach= 0.4, 0.65, 0.80,

and 0.88 and correspondkn8 densities of 1.11 X 10-3, 3.50 X 10-3, 1.50 X 10-3 and 1.11 X

10-3 slugs/cu ft, respectively. Th_ QF for reference analysis is tabulated for comparison.

The base for sensitivity analysis is different ,_rom the reference analys_s in the chordwise

bending stiffness.

Variation I shows the effect of "tuned" frequencies. The analytical frequencies were

"tuned" to match the GVT frequencies. The eflect is primarily due to the wing torsion

mode frequency change from 40.3 Hz to 42.8 Hz, and results in increasing QF of the tip
mode. In Variation 2, there is a 10% increase in wing C for _ = .538 to 1.0. There is a

n_x

: drop in QF for all three modes. The effect of shift Lnwing aerodyrmmic center (_= .538 to

1.0) by .05C arLd .10C forward, is also seen to be significant from results tabulated under

Variations 3 and 4. As expected, QF drops for all three modes. The stiffness Variation 5,

shows the effect of including the stiffness matrix modification b_ed on the cantilevered

win8 orRy frequencies. There appears to be a further drep in OF for the naceUe vertical

bendin8 and wing chordwise bending modes. _s requires further evaluation to understand

the reasons for the significant effect.

The effect of using doublet-lattice aerodynamics program (DUBLAT) rather than the strip

theory program (AF1) was evaluated. No empirical corrections were used. The results

taoulated under Variation 6 should be compared to Variation 2 for M = .4 and .65, and to

Variation I for M = .8. The reason being that the test C sectional distributions used for
rl a

M = .4 and .65 are about 10% lower than the corresponding theoretical DUBLAT

distributions. For M = .8, the test and theoretical C distributions are sLrnilar. It is not
n_

surprisin_ that the flutter dy_amic pressure predicted by DUBLAT at M = ._8 is

significantly higher than the AFI results as well as the test results. The DUBLAT results

at Mach 0.4 and 0.65 appear to be Ln the right range. However, the reason for DUBLAT

predicted flutter dyl, .mic pressure at M = .80 being significantly higher than the results

from the base run, needs to be Investigated.
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The effect of chordwtse mode shape appears to be significant based on preliminary

anessment. As described earlier, there is a significant wing bending and torsion motion

usociated with the wing chordwts¢ bending mode for the wing (full)-naceUe

(nomtnal)-winglet (nominal) configuration. An attempt to use expertr_entally measured

mode shape was initiated, but has not been completed. It was found that the wing twist

could not be reliably reduced from the measured data as it was sensitive to small changes

in accelerometer readings. The error bounds for the accelerometers are not known with

sufficient accuracy to enable evaluation of the quality of wing twist information obtained

from the displacement data.

The application of compressibility correction or "C correction" was compared to directc
solution using AF1 with empirical sectional data for appropriate Mach numbers. The

at any Mach number. (QFM). may be determined asflutter

CN(,) MI

,..__ QFM = QFMI = C_ QFMI

(c,o).

where C2c i_ 8enerally determined from the wind tunnel test data, and MI _s selected to be

incompressible Mach number, It has been customary to use MI = 0.4. Figures 18a to 18d
show comparisons of two methods of ._olutions for wing-nacelle and wing-nacelle-winglet

, configurations at a density of I.ii X 10 -3 slugs/cu ft. The comparison is shown for two

flutter modes, nacelle vertical bending and second wing bending mode. For the

wing-nacelle configuration, the Cc correction resulted in higher OF at transonic Mach
numbers for both modes. However, the nacelle mode is softer at higher Mach numbers

using actual Mach solution compared tG the solution obtained with C correction. For thec

wing-nacetle-wlnglet configuration, the C c solution approximated fah-ly well the actual
Mach solution. These comparisons have been made for specific configurations and

altitude. No general concluslot_ are warranted except one. The "C correction" may givec

!
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results different from the actual Mach solution, and may not be always conservative.

However, the slmplc approach may be useful for preliminary evaluation of test

configurations for the purpose of planning the test.

I0. Conclusions and Recommendations

The test program has been successful in creating the data base for flutter characteristics

of winglet configured wing for a twin-engine configuration. The four flutter mechanisms

predicted by analysis were obtained in the tunnel. The number of flutter test points for the

ten ht_-speed configurations and two low-speed configurations, obtained in the tunnel

cover a wide range of altitudes and Mach numbers. This provides an excellent re,_erence

for evaluation of analytical correlation for a configuration with and without winglet.

" The mass-density ratio effects at low Mach numbers were correlated (analysis vs. test)

satisfactorily over a wide range. The application of Jonventional analysis proved to be

satisfactory through the transonic Mach regime. It was not surprising to find that

theoretical doublet-lattice analysis gave unconservative answers at M = .8 and .88. It was

concluded that the flutter characteristics of a winglet configured high aspect ratio wing
.i

"_ can be satisfactorily predicted with careful application of existing methods for a

_. twin-engine airplane configuration. The wing chordwise bending mode for certain

configurations can be expected to have significant w_g bending and torsion motion. It is

indicated by the present study that this coupling effect is important,

It ks recommended that the experimental and analytical data base established in this

program be used to advantage. The number and diversity of flutter test points and the

correlation established with simple methods, should be used to evaluate state-of-the-art

transonic codes. There are many examples published where two or three

degrees-of-freedom systems or simplified representations have been studied for transonic

effects using very expensive codes. It is believed that the time has come to make a real

effort using the data from a realistic configuration to determine the advantages and costs

of applying transonic codes.
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TABLE I.LOW-SPEED MODEL FREQUENCIES
EFFECT DUE TO TUNNEL INSTALLATION

WING(EMPTY) - NACELLE (NOMINAL) - WINGLET (20 DEG)

4

MODEL FREQUENCIES (Hz)

FOR INSTALLATION IN

". MODE CONVAIR TUNNEL NASA TDT ANALYSIS

1StWING BENDING 3.93 4.0 3.78

NACELLE SIDE BENDING - 8.0 7.83

NACELLE VERTICAL BENDING 9.45 9.5 9.13

WING CHORDWISE BENDING i 1.74 13.49 12.4

2rid WING BENDING 12.19 13,0 11.93

NACELLE ROLL 17.88 - -

ist WING CHORDWISE BENDING +

O/B WING TORSION 23.46 24.6 22.85

O/B WING TORSION + WING

CHORDWISE BENDING 23.80 24.17 25.6

IstWING TORSION 27.00 26.6 31.73
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TABLE 2: HIGH SPEED MODEl., CORRELATION OF ANALYSIS AND TEST VIBRATION

FREQUENCIES (HZ) FOR CLEAN WING (EMPTY)

MODE TEST ANALYSIS

RIGID NASA NASA WITH
PLATE BALANCE BALANCE STIFFNESS MOD

IstWing Betiding 7.81 7.80 7.61 7.80

2nd Wing Be_ing 25.00 24.70 23.93 24.70

IstWing Chordwise Bending 34.00 32 02 34.90 32.02

3rd WL-_ Bending 52.68 52.12 52.61 52.12

Ist Wing Torsion 58.42 58.08 57.70 58.08

Higher Mode 86.7 85.88 90.83 85,88

Higher Mode 96.i0 94.12 95.91 94.12

_r
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TYPICAL MODELWING SECTION

VIEW A._ ( FOR DIFFERENT WING TIPS)

NOMINAL TIP WINGLET /'_AS$-$1MULATOR IAI.LASTEO TIP

( LOW-SPEED ( H|GH-SPEED
MODEL ONLY) MODELONLY)

FIG, 2 MODELWINGAND2lING TIPS
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FIGUPE3 LtW-SPEED_ODELS_T-L'PIP'LAPfGLEYTUNNEL
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FIGURE 4a MASS-DENSITY RATIO EFFECTS ON FLUTTER
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FIGURE -_b MASS-.DENSITY PATIO EFFECTS ON FLUTTER - EXPANDED SCALE
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FIGURE 6 NASA LANGLEY TDT CHARACTERISTICS FOR FREON OPERATIOH
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ANALYSIS

MODE STRUCTURAL DAMPING (g)

0.0 0.03

NACELLE VERTICAL BENDING(NVB)

WING CHORDWISE BENDING(WCB) _-_.... -::-- .... -_ -"

WING(TORSION)TIP (WT)

SECOND WING BENDING(WB2) ........_ .-I,..-_-

THIRD WINGBENDING(WB3) _ _ : _ _ _ _ = _ _ _ _ _ = _ _: = : = _

TEST RESULTS

FLUTTER POINT LOW DAMPED

0 NACELLE VERTICAL BENDING (NVB) (]D

<_> WING CHORDWISEBENDING (WCB)

Z_ WING(TORSION)TIP (WT)

SECONDWING BENDING (WB2) [B

NACELLESIDE BENDING(NSB) (_

NO FLUTTER

FIGURE 7a LEGEND FOR FLUTTER TEST AND CORRELATION FIGURES
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NOMINALTIP ....

....... BALLASTEDTIP ........................ :
................... i .....

L_ItlGLET{NO[IINAL)

FLUTTER MODES

0 NACELLEVERTICALBENDING (1_ LO_J-D_PED )
200 ....

17 SECONDWiNGBENDING

NO FLUTTER ........

,_,.? ,, 17.S HZ.(_Q \ "
r,,"

2,'HZ. \X_L

'" 150 "
t.Y

<j

_-_= 16HZ'_ "s.z. .....
• " !

__1

_ .......... X

100.... 17.5 HZ._ '

\HIGH RESPONSE ;

........... MACHNO.

FIGURE 7b EFFECT OF WINGTIP CONFIGURATIONOH TEST FLUTTER BOUNDARY,

WING (EMPTY)- NACELLE(NOMINAL)

'7
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NOMINAL TIP 1 ..........

--- BALLASTED TIP .....

...... WINGLET(NOMINAL) ..........................
[ ....... --_-i

FLUTIER t.IODES .......................................

- - 0 NACELLEVERTICAl. BENDING .........................

WING TIP MODE

<> WING CHORDWISE BENDING ' -

E] SECOND WING BENDING (LOW-DAMPED) ..............

NO FLUTTER -.

._ -........... \ _23.5 HZ. - ............200 ......................................

__ _ 14.5 HZ...........

° \Q.
v ..................

; 26 HZ.

_' -.&
• _ _. _-- m _. 24.5 HZ. HIGH RESPONSE ;

1so

_=_ OF_POORQUALITY (_ 20 HZ, ....... ,
t.L

• . \ "

,%

I00 ...... _ 19.5 HZ,....

i ....
i i i

.4 .5 .6 ._ ._ .9
_,LACHNO.

FIGURE 7c EFFECT OF WINGTIP CONFIGURATIONON TEST FLUTTER BOUNDARY,

WING (FULL) - NACELLE (NOMINAL)
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NOMINALTIP

_--_ BALLASTEDTIP

WINGLET(NOMINAL)

FLUTTERMODES

LO_' DAMPED

220 0 NACELLEVERTICAL BENDING ()

O SECONDWING BENDING 11

l ..... I i _ ,, I I

.4 .5 .6 .7 .8 .9

I MACHNO.

! i
,1-_ FIGURE 7d EFFECT OF WINGTIP CONFIGUPATIONON TEST FLUTTER BOUNDARY,

l WING (EMPTY) NACELLE (SOFT)
r
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J

J

WINGLET (0° CA_TANGLE) .................

WINGLET (200 CANT ANGLE) ..................

................. FLUTTERMODE_...............

0 NACELLE VERTICAL BENDING ...............:.__

C] SECOND WING BENDING ........
180 .........................

NO FLUTTER ........

16o ................ ___L-\N--122.5HZ. "...................
_.._ .................. 20 Hz.L_,> .....................................

v

_ 140 ................

m , 17.5 HZ.

_ Z"m'_ " _

120 18 H ........

, 18 HZ._' .....
' 17.5 HZ.

i00 -- r

80 _ HIGH RESPONSES_.

60 ......................

t, ,,it, J I I * ......
|

.4 .5 .6 .7 .8 .9 . .

MACH NO, "..................

FIGURE 7e EFFECT OF WI_!GLETC#_JTA_!GLEON TEST FLUTTER BOUNDARY,

WI_IG(EMPTY) - _IACELLE(_IOMI_IAL)- WINGLET
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o

:= OR,_I;_*L- " '

,._'_=o:z'_2Ollot .......................oEpoorQ_a'_:.i O ' _"w-..........................._ ]" 0

250........ I

TEST

C) _:B-............

- 2nd WB

200'

I00 .......... /

/t

-/,

J
J50 ,,....

.4 .{ .6 ._ ._ .9""_" MACH NO,

FIGURE _a FLUTTER CORRELATIO;IFOR WING (EI_PTY)- NACELLE (NOMINAL)

NOMINAL TIP
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I00 ......

50
.4 .5 .6 ._ ,8 .9

MACH NO,

FIGURE 8b FLUTTEP CORRELATION FOP WING(EI_:PTY)- PIACELLE(fJONINAL)-.
BALLASTED TIP
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FIGURE 8c FLUTTER CORRELATION FOR WIIJG(EMPTY) - NACELLE (NOMINAL) -

WINGLET (20 DEG)
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u
Z .................................

i0 ..................
0
I,I ...........................................

n,-
U,,.

250,
TEST.........

-- It-WT................. -.....
tl

_,_ ...... _ WT

I 20o .........21__. ..........
tl --- •

,,,WCB

u_
150 .......

o°

100 / ......

/ -
...

50 ,.
.4 .g .g ._ .8 .9

" MACH NO,

FIGURE Oa FLUTTERCORRELATIONFOR WING (FULL) - NACELLE(NOMINAL) -
NOMINAL TIP ,-;,
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EL .......

V

(:c

or}
u_ 150 ........... I

0,.

U

_" ," __. I

z< // .................. NVB
/

.............. i

I00 /

J

....... ##' _ J

J
50 _ / ,

MACH NO,

FIGUREIOb FLUTTER CORRELATIONFOR WING (EMPTY) - _IACELLE(SOFT) -

BALLASTED TIP i
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200 '-

!

V

° /, !

150 .......

./

i .......

! ........... NW.
I 121 _ ..
} 100 -- _
i -

/

/

50 . ,.......... / ......... /
.... 4 ._ ._ _ .8 ._

MAtHNO,'

FIGURE]Oc FLUTTERCORRELATIONFOP WING IEMPTY)- _IACELLE(SOFT)-

WIrIGLET(20DEG) 51
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/
WB2 /-

200 ................

11 ........

(.D

m !50 .......
uJ

- i\
Z

= ....... N /

I00 ............. /

....................

5O /
.4 .5 ._, _ ._ ._

MACH NO,"

FIGURE 11 FLUTTER CORRELATIONFOR WING (EMPTY) N_CELLEINOMINAL) -

WINGLET (0 DEG)
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140 DENSITY = I.II X 10-3 SLUGS/FT.3 ............... ...... ,
°..

i MODE ' DAMPING, g :

I 120 0.0 0.03 '=

NACELLE VERTICAL 0 0 ............ :
BENDING

SECOND WING F"l •

I00 BENDING .............

i .....
u ......

, ._ MACHNO......

FIGURE 12a ANALYTICAL FLUTTER BOUNDARIES FOR WING (EMPTY)- NACELLE (NONINAL)-

_IOMINALTIP, MACH NUMBER EFFECT
,,
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140

DENSITY = 1.11 X 10-3 SLUGS/FT. 3

120 DAMPING, g .........................

0.0 0.03 .:
NACELLE VERTICAL
BENDING MODE 0 • ............: .................
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FIGURE 15c NODE LINE AT APPROACH TO FLUTTER, 17.5Hz MODE, M=0.828,

WING(EMPTY)-NACELLE(NOMINAL)-WINGLET (20 DEG)
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FIGURE 18b COMPRESIBILITY CORRECTION AND FLUTTER DYNAMIC PRESSURE

SECOND WING BENDING _F)DE, WING(EMPTY)-NACELLE(NOMINAL)
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FIGURE 18c COMPRESSIBIITYCORRECTIONAND FLUTTER DYNAMIC PRESSURE

NACELLE VERTICAL BENDI_G MOOE, WING(EMPTY)-NACELLE(NOMINAL)-

WINGLET (20 DEG)
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FIGUREl£d COMPRESSIBILITYCORRECTIOn;ArIDFLUTTERDYrIAMICPRESSURE,

SECONDWING BEND:NGMODE,WING(EMPTY)-NACELLE(_IOMINAL)"WI_IGLET(20DEG)
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FIGURE Al GEOMETRY OF WING, WINGLET AND _IACELLE
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FIGUREA2 WINGSPANWISESTIFFNESSDISTRIBUTIONALONGELASTICAXIS
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FIGUREA2 CONT.
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FIGURE A3 MASS PANELS FOR TEST MODEL
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PANEL WEIGHT I X Y Z 'I
{LBS) (in_h_s) (inches) (inches)iIXX(Ib-in2_ YY(]b-in2)IzZ(Ib-in2'

1 1.5152 81.79 15.16 17.26 26.1799 25.8358 43.0908
2 2.0257 93.19 15.28 16.73 31.1621 38.8700 58.1186
3 .9644 104,23 15.28 15.64 10.3202 9.2511 18.1377
4 .7504 105.96 22.82 16.72 2.7575 7.1399 9.2932
5 1.2184 97.60 24.84 17.96 11.4647 15.5340 22.9020
6 .8932 89.03 27.16 18.60 9.0077 6.3928 13.5800
7 .7426 95.41 36.15 19.60 6.5759 5.3166 10.9228
8 I.0410 102.08 33.45 19.07 9.1526 8.2932 15.5698
9 .3643 109.12 31.86 18.54 3.2248 2.0907 5,0689
10 .3794 112.49 40.68 19.56 3.6570 2,4819 5.8711
11 .7713 106.67 42.93 20.17 6.2762 4.4731 9.8104
12 .5539 100.99 45.70 20.61 3.9633 2.9072 6.4476
13 .4422 106.41 54.25 21.43 2.8395 2.058d 4.6_70
14 .5976 111.48 51.96 21.05 5.2324 3.2884 8.4956
15 .6066 115.56 47.95 20.51 5.2781 2.5627 7.3311
16 .5040 120.94 60.52 21.53 3.7356 1.3057 4.8433
17 .3710 I16.27 60.62 21.80 2.9533 2.1636 3.4038
18 .3534 111.70 62.62 22.22 2.1519 1.1392 3.1105
19 .2660 116.54 70.08 22.95 1.I069 .6799 1.7108
20 •2426 120.22 68.15 23.63 I.1095 .7099 I.6593
21 .1601 123.49 66.53 22,31 .8287 .4322 I,1871
22 .1821 126.13 73.49 23.03 .8369 .3516 1.1446
23 .1690 123.99 74.77 23.27 .8000 .4781 I.1860
24 .2055 120.44 76.42 23.61 .6768 .4211 I.0262
25A ,1514 124.O0 82.04 24.89 .5119 .2698 .7391
26A .1061 127.14 80.57 24.61 .3222 .1862 .4667
27A .1743 129.11 79.24 24.37 .5621 .3085 .8149
28A .0799 131.88 84.62 24.94 .2009 .1160 .3058
29A .09!0 130.08 85.84 25.10 .2054 .1207 .2880
30A .1404 127.45 87.16 25.36 .3055 .2120 .4999

• . • "_') .31A 0706 130.54 91 35 25.81 1_,,8 1341 .2493
32A .2265 132.92 91.76 25.76 .2975 .1517 .4209
33A .0756 134.70 90.23 25.55 .2659 .1241 .3733

TOTAL 16.4356 04.01 38.35 19.42 8065. 2952. 10983.
I L .

i '

b) WEIGHT X Y Z Ixy ^ i Ivv IZZ^

(LBS) (inches)i(inches)l(inches)(Ib-inZ)(Ib-in2)(Ib-in_)il

NACELLE
POD IO.7343 82.1_5 31,356 12,33_ 132.126 249,334 242.128
STRUT
AS WGD 3.5650 91.678 30.997 16.961 3.934 79.35[ 77.863

l

NOTE: ALL INERTIAS ABOUT C.G,

FIGURE A4 MASS AND INERTIA PROPERTIESFOR

a) WING

b) NACELLE

c ) WING TIPS
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WEIGHT X Y Z Ixx Ivy IZZ

PANEL (LBS) (inches)!(inches) (inches) (11_-in2) (lb_in2) (lb.in/)^

l 2.8653 86.25 19.16 17.45 12.011 8.294 I0.556
2 4.1605 94.05 18.43 17.08 14.835 50.725 52.925
5 6.1572 98.04 24.63 17.94 50.234 56.291 93.755
6 1.19._8 88.80 22.85 17.94 2.198 2.726 2.115
7 1.8406 97.47 36.59 19.61 12.628 4.164 14.811
8 4.3684 101.94 33.44 19.08 33.068 35.358 63.324
II 3.2216 I06.84 42.39 20.07 2._.452 16.478 39.142

.-- 12 1.8514 102.15 44.63 20.44 14.146 4.717 17.336
13 1.4225 I07.71 53.50 21.31 I0.421 2.222 12.694
14 2.3607 Ill.71 51.53 21.00 18.538 I0.420 26.981
17 1.5488 I16.31 60.15 21.85 9.113 4.776 13.054
18 .83_ I12.92 61.73 22.11 4.870 l.452 5.876
19 .4552 117.26 68.61 22.77 1.334 .5_0 1.689
20 .8415 120.44 67.95 22._0 4.797 l.469 5.900
23 .4008 123.39 74.73 23.30 1.I19 .631 1.634

TOTAL 33.5283 I01.47 35.91 I 19.27 8118.27 2944.27 I0810.31
I
I

NOTE: ALL INERTIASARE ABOUT C.G.

FIGURE A5 FULL FUEL MASS & INERTIA PROPERTIES

81

1985004961-103



CANTILEVER NACELLE FREQUENCIES AND MODE SHAPES *

No. MODE FREQ (HZ) MODE SHAPE

1 NAC SIDE BNDG 15.74 TY 1.0 RE .152 RZ -.III

2 NAC VERT BNDG 24.70(NOM),IS.99(SOFT) TX 1.00 TZ -.968 RY -.179
3 NAC ROLL 28.97 TX .72336 TY 1.0 TZ -.89376

RE 6.591 RY -.181 RZ 2.509

qANTILEVER WINGLET MODE SHAPES**

(93.00 HZ)

WINGLET NODE
TZ RX RY

AT WBL

t.351 .003174 .00061688 -.0003185

4.197 .055950 ,0029368 -.0015398

6.760 .20376 .006447 -.3034839

9.05t .45002 .01098 -.0063343

11.939 1.0000 .018689 -.011197

*IN GLOBAL FRAME

**IN WINGLET REF FRAME

FIGURE A6 CANTILEVEREDNACELLE AND WINGLET FREQUENCIESAND MODE SHAPES
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FIGURE Bl WI_IGCNJS. IIACH_IUMBER
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i FIGURE B6 WING SECTIONALCn DISTRIBUTIONAT M=O.Ol
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FIGURE B]3 WING AERODY_fAMIC CE_ITERDISTRIBUTION, WING-NACELLE- WINGLET (20 DEG.)

96

1985004961-118



........ _ ........ : - . -: ......... : ." ...... /-.--.,

............................................

e,,,, ......................... : ........ ' .......................... .:- :...... .:.__L... ;._.:

.. ........... , .......... : ......

! _ d #

,.4 .... _ " 0 ' _ _ ..... ,-,4............:'-.-4"? ..... "_
I U _............ ._......... ;.........:........ .."

i

O"dOH3% (g_N3/ ottgN 3 ) 'NOIIV30] _ _'IONIM ..............

FIGURE Bl,_ WI_IGLETAEPODY_!,AMICCENTEP DISTRIBTUIO_I,WI_tG-_IACELLE-WINGLET (20 DEG.)

97

1985004961-119



0

/

Z

!
t,,.el

3C
t._

o "_

I--- ;.--
Z Z

t_% ,,

"z I'_
o

t_
-.1
--.1

Z

_ _ ""

I ,, I I . , .I .... I , I ,, , I _ 0

T-'93a ' nN3

FIGUREB15a THEORETICALWINGC DISTRIBUTION,WI_fG-NACELLE-WIHGLET(20DEG.)
n
a

M ,,0.40

98

1985004961-120



0
g

OF. POOR _ ...... : . .......

• -o

Z
,c(

_/1 --
. I

s-,,I . -.

3E
IaJ

. "......... L#') "_"

=,-

% "

-te

_ -

t._ ,,

I I I I _ 0 --I I I

. ='N3
i'9_ '

FIGURE B15b THEORETICALWING C DISTRIBUTION,WING-NACELLE-WINGLET(20DEG.)
na

M ,,'0.65

99

1985004961-121



FIGURE BlSc THEORETICALWING Cna DISTRIBUTION,WING-NACELLE-WINGLET(20DEG.)
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FIGURE BI6c THEORETICALWINGLET Cn DISTRIBUTION,WING-NACELLE-WINGLET(20DEG.)
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FIGUREB18 THEORETICALWINGLETAERODYNAMICCENTERDISTRIBUTION,

WING-NACELLE-WINC_LET(20DEG,)
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.4

ist WING BENDING 2nd WING BENDING ist WING CHORDWISE

TEST (HZ.) 7.81 25.00 34.00

ANALYSIS(HZ.) 7.80 24.70 32.02
L

3rd WING BENDING HIGHER MODE HIGHER MODE

I

TEST(HZ.) 52.68 58.42 86.71

ANALYSIS(HZ.) 52.12 58,08 85.88

HIGHER MODE
| i ,, , l

LEGEND:

NODE LINES

TEST

ANALYSIS

*TEST NODE LINE NOT

AVAILABLE

TEST(HZ.) 96.10
ANALYSIS(HZ.)94.12

FIGURE Cl MEASURED & CALCULATEDFPEOLIENCIES& NODE LINES FOR WING (EMPTY)

: III
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Ist WING BEtiDING NACELLE SIDE BENDING !_ACELLEVERTICAL
BEHDI_G

TEST(HZ.) 7.72 15.14 19.82

ANALYSIS(HZ.) 7.76 15.26 18.60

2nd WING BENDING NACELLE ROLL l_t WING CHORDWISE

t #

TEST(HZ.) 24.02 29.49 30,47 -

ANALYSIS(HZ.) 24.15 29.80 32.07

3rd WI_IGBE_!DING Ist WING TORSICII

/ LEGEND:
NODE LINES

TEST
ANALYSIS

[EST(HZ.) _3,75 55.51

ANALYSIS(HZ.) 42.76 57,19

FIGURE r? VEASUPED # CALCULATEDFPEOUE_ICIES& NODE LINES FOR
WI_JG(EF!PTY)- _ACELLE(EIPMINAL)
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II"
F

Ist WI_!GBENDING NACELLE SIDE BENDING NACELLE VERTICAL

BETIDING

TEST(HZ.) 6.84 15.23 19.82

ANALYSIS(HZ.) 6.72 15.19 18.54

2nd WING BENDING 1st WING CHORDWISE NACELLE ROLL

BENDING
/

1/ /

> /
/ J/

/ "- ... / // ---/ /
lEST(H/. ) 21.09 27.64 29.69

ANALYSIS(HZ.) 21.08 26.64 29.98

_rd WING BENDING Ist WING TORSION

/ / LEGEND:

/ NODE LINES

TEST
ANALYSIS

/// /
TEST(HZ.) 40,33 46.88

ANALYSIS(HZ.) 38.91 47.01

FIGURE C3 I_EASURED& CALCULATEDFREPUENCIES & ._'ODELI_JESFOP

WING (EMPTY) I_ACELLE(_JOMINAL)-_I_JGLET(20 DEG)
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Ist WING BENDING NACELLE SIDE BENDING 2nd WING RENDING

TEST(HZ.) 6.06 15.04 17.19

ANALYSIS(HL) 6.06 14.98 16.80

NACELLE VERTICAL IST WING CHORDWISE NACELLE ROLL
BENDING BENDING

TEST(HZ.) 19.14 22.36 29.20

ANALYSIS(HZ.) 19.08 25.20 29.93

3rd WING BENDING lst WING TORSION

//_ LEGEND:

TEST

/il ANALYSIS

J i

TEST(HZ.) 32.03 46.39 '

ANALYSIS(HZ.) 32.41 46.63

- FIGURE C_ fIEASURED_ CALCUL#TED FREOUEI/CIES& NODE LINES FOR

WING (FULL) - NACELLE(IlOMIN#L)
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-T

1st WING BENDING 2nd WING BENDING tJACELLESIDE BENDING

TEST(HZ.) 5.66 14.45 15.62
ANALYSIS(HZ.) 5.59 14.._ 15.75

NACELLE VERTICAL ]st WING CHORDWiSE 3rd WING BENDING
BENDING BENDING

i

a _L

TEST(HZ.) 19.04 21.48 28.61

ANALYSIS(HZ.) 18.65 22.87 27.73

NACELLE ROLL ]st WING TORSION
i

_T/ m ,,,, J

I

LEGEND:

/7 NODE LINES

TEST

-- _ANALYSIS

. )

TEST(HZ.) 29.68 4;.06

ANALYSIS(HZ.) 30.26 41.89

FIGURE C5 MEASURED _ C_LCULATED FPEQUE_ICIES& _JODE'LINEc FOR

WING (FULL) - NACELLE(NOMINAL)-WINGLET(20 DEG)
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APPENDIX D - Procedure for Modifylng St1£fness Matrlx ORIGIhlALF,., .

OF POOR QbALi;"rThe procedure is based on following assumptions--

i. The analytlcal mode shapes exactly match the test mode shapes.

2. The frequecies for modes m + 1 through n are exact where m lowest
frequencies are available from the test and n is the total

degrees-of-freedom of the analytical model.

3. The analytical mass distribution accurately describes the model.

-_ :o j ,c:l_n

i_<i:.!>I"1%1_:,..II__-i'[=]
_ , i:<.,.J/oI <-i

-r

-:[._':Ql_,.,]t<ll=i+;-_'II_ll;<_]!e]I,_]

: ,I=][_,,,]i _.,j[ + _I-- ...

I

' _,, [_".7:i_1. (=_)'r..<j:_,,_,_:_,j(L,,,,:,.,:j}:,,,, "IE=]

3 _
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q_e procedure was applled to cor[ect the stlffness matrlx based on the clean
wlng vlbration test.
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APPENDIXE

SUMMARY OF EXPERIMENTALRESULTS - HIGH SPEED MGDEL
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